2024年11月13日

星期三

科学技术
联系我们
江苏省钢铁行业协会
协会地址 : 南京市御道街58-2号 明御大厦703室
咨询热线 : 025-84490768、84487588
协会传真 : 025-84487588、84490768
喷吹煤造气炉工艺参数的研究

2022-07-04 16:37:05

来源:冶金信息装备网

浏览1434

为了使高炉生产更加高效、节能环保,提出了高炉喷煤新工艺,将造气炉内煤气化生产富氢煤气代替高炉喷煤。采用二硅化钼高温炉对不同工艺参数(温度、时间、压力、气化剂流量)下煤的气化进行实验,用红外线气体分析仪分析产出煤气的气体成分,结果表明:随着温度的增加,煤气中CO含量升高,H2含量逐渐降低,还原气体组分(CO+H2)含量增加的速率逐渐变缓;煤气中的还原气体组分含量随着反应时间的增加先增加后减少;随着压力的增加,煤气中CO和H2的含量先增加,继续加压,煤气中的CO含量逐渐平稳且有下降的趋势,H2含量的上升逐渐变缓,煤气中的还原气体组分含量升高的速率逐渐变慢;随着气化剂流量的增加,煤气中还原气体组分含量先升高后降低,H2和CO含量均呈现先升高后降低的趋势。当反应温度为1000℃,反应时间为5min,气化剂流量为10L/min,煤气出口压力为0.5kPa时,造气炉最佳煤气产出成分CO和H2分别为49.05%和18.75%。

高炉喷煤是炼铁过程中的一项重要技术措施,可以降低冶炼成本、增强竞争力,但系统设备比较复杂,占用空间较多,而且投资较高,在获得经济效益的同时,直接向高炉喷吹煤粉会给高炉冶炼过程带来许多负面问题。新的高炉炼铁节能减排技术将成为今后研究的重点,国内外研究机构和钢铁企业对此已做了大量研究,并取得了一定成果,例如,高炉富氢冶炼、炉顶煤气循环利用等技术已成为当今的研究热点。

高炉富氢冶炼主要是喷吹含氢原料,如喷吹水蒸气、废弃塑料等富氢物质。但喷吹水蒸气要消耗大量的热量,所以不能作为大量提高含氢量的手段;与煤相比,废塑料气化产物中H2/CO的比值要远大于喷吹煤粉时的比值,更有利于铁氧化物的高温还原,国内对废塑料的前期分类或处理手段的不足导致高炉喷吹塑料还处于研究阶段;把高炉煤气或富氧后的高炉煤气直接喷入高炉均会造成生产率降低、燃料比升高等缺点,增加炼铁成本。喷吹焦炉煤气须对其进行净化处理,投资比较大,另外,我国优质焦炉煤气供应紧缺,所以喷吹焦炉煤气只能当作喷煤的补充,很难实现单一喷吹。

基于此,提出了高炉喷吹新工艺,即把煤粉在造气炉燃烧气化,把风口前的燃烧转移到造气炉,其工艺流程为:造气炉燃烧煤→产生高温煤气→喷入高炉,这样不仅可以简化操作、改善炉况,而且还能调节喷吹的煤气成分,喷入含氢量相对较高的煤造气,从而实现“富氢”冶炼,造气炉中优劣煤都可以用,用普通煤代替部分焦炭,节省焦炭的使用。

煤造气在煤化工领域研究的比较多,目前很多学者对造气炉做了大量的研究,对造气炉的各个参数的研究也很多。但是大多数都是固定床或者流化床造气炉的研究,而且所用的原料与技术手段也不相同。在冶金领域,关于高炉喷吹煤气的半固定床造气炉的研究更是不多,高炉喷吹煤气需要高温、高压、造气量大、成分稳定,而且必须保证造气炉可以连续且稳定地向高炉内部喷吹煤气,所以必须得对造气所用的半固定床造气炉的各个工艺参数进行研究。文章主要研究造气炉各个工艺参数对煤气成分的影响规律,为高炉喷吹煤气的造气炉的实际生产提供理论参考。

1实验条件与方法

1.1试验原料及设备

试验使用烟煤和无烟煤煤块作为配煤的原料,原料煤的工业分析如表1所示。试验所用的烟煤和无烟煤配比分别为92.5%和7.5%。试样煤经过对辊机破碎之后,筛分成8~10mm的均匀煤块,试验装置为二硅化钼高温炉,电脑控制加热,炉内反应器为Φ70mm×5mm×600mm的封闭耐热钢管,上面设有加料装置、出气装置和加水蒸气装置,反应器底部铺垫直径为8mm的刚玉球,铺垫高度为200mm。试验装置如图1所示。试验原料由上部加料口加入,且加料口可密封,每组试验料层厚度为200mm。试验所用水蒸气由上部加水蒸气装置通过细耐热钢管直接加入,试验所用气体由转子流量计按照预定比例经过混气罐后从反应器底部通入,煤气从上部出气管排出,由集气袋收集之后,把集气袋连接在红外光谱气体分析仪上,检测其气体成分,记录每组参数所对应的数据。

26d9c50e23771dfd0091f422459f2761.png

9b3110789b7464a217a575227d106fea.png

1.2研究方案及实验结果

二硅化钼炉按照计算机程序以10℃/min升温,升温期间持续通入氮气,达到预定温度,开始通入气化剂,反应稳定后,用集气袋收集气体,然后用红外光谱气体分析仪检测每组气体成分,工艺参数煤气出口压力、反应时间、气化剂流量及煤气成分如表2所示。气化剂按O2∶N2∶CO2∶H2O=21∶69∶5∶5进行配比。

5aae7c5ff98be1aab972c9a26aa42095.png

2不同工艺参数对煤气成分的影响

2.1温度对煤气成分的影响

煤气中各气体成分含量随反应温度的变化如图2所示。当反应温度为900℃时,C与CO气化反应缓慢,煤气中CO含量不高为32.87%,但是H2含量最高为19.26%。随着反应温度的升高,煤气中的CO含量逐渐升高,当反应温度为1000℃时,煤气中CO含量为40.76%。随着反应温度的继续升高,煤气中的CO含量升高变得缓慢,煤气中H2含量随着温度的升高而略微有所降低,因为随着温度的升高,C与CO2反应速率加快,煤气中的CO含量逐渐增多,从而稀释了煤气中的H2。当温度为900℃时,煤气中的还原气体组分(CO+H2)含量为52.13%,当温度从900℃升到1000℃时,煤气中还原气体含量升高较快为57.77%,温度继续升高到1100、1200℃,煤气中还原气体含量变化不大,只有略微的增加。所以综合考虑,反应温度选择1000℃,这样煤气中H2含量较高,且还原气体含量也在一个较高的水平。

d2e2a2281d4d4b62a69701190963f03b.png

反应温度是煤炭气化过程中的一个重要参数,因为反应温度不但能影响气化反应速率,同时也能控制反应的正反。C与CO2反应是典型的非均相吸热反应,升高温度使反应速率增加,所以煤气中的CO浓度升高。C和H2O的反应也是吸热反应,提高温度有利于反应的顺行,同时,碳原子能量增加,碳键吸收能量之后更易与水发生反应,但是随着温度的持续升高,温度对煤反应性的影响逐渐变小,这一结论与王培所得结论相同,李文军就CO2-O2-H2O混合气氛下煤气化过程进行了分析,随着气化温度的升高,CO2的还原反应加剧,产品煤气中CO含量不断增加,而H2含量不断下降,CO和H2总含量维持不变。C与CO2的反应速率要比与H2O的慢,C与CO2的反应需要吸收更多的热量,所以,当温度比较低的时候,煤气中H2的含量比较高,当温度逐渐升高时,C与CO2的反应逐渐加快,煤气中CO含量逐渐升高,相对的,煤气中的H2浓度稍有降低。

2.2反应时间对煤气成分的影响

煤气中各气体成分含量随反应时间的变化如图3所示,反应1min后,检测出收集煤气中的CO含量为34.34%,含量为6.75%。随着反应时间的增加,煤气中的CO和H2含量均有所增加,5min时,煤气中的CO最高达到最高为40.76%时,煤气中的H2含量达到最高为17.17%,反应继续进行,煤气中的CO和H2含量均有所降低。煤气中还原气体组分(CO+2H2)的含量随着反应的进行,先增大后减小,从1min时的41.09%,增加到5min时的57.77%,之后开始降低,9min时还原气体含量降低到53.37%。

c5b610ba2a1bf04d80976a00b4c046cb.png

当反应只进行1min,气化剂与反应器中的煤反应不完全,所以煤气中的CO与H2含量很低,随着反应的进行,反应逐渐稳定,煤气中的CO和H2含量逐渐上升。反应继续进行,由于反应器内的料层不能添加,能与CO2反应的煤的比表面积逐渐减少,导致C转化减慢。H2O的吸附活化能低于CO2,所以C更容易与H2O反应,煤气中的H2含量相对下降较少。实际生产应该适当地增加煤层厚度,气化剂流量与煤层厚度之间的关系需进一步的研究。

2.3气化剂流量对煤气成分的影响

煤气成分随气化剂流量的变化如图4所示,随着气化剂流量的增加,煤气中H2和CO含量均有一个明显的增加,在流量为10L/min时,H2和CO含量都达到最大值,分别为17.01%和40.76%,当气化剂流量进一步增加,煤气中还原气体含量明显降低。

be40ff52698bffe9fe3d3e2ecf4236ad.png

通入反应器中的气化剂流量较小时,煤与气化剂的反应不完全,反应进行不彻底,生成的煤气中CO和H2含量较低,随着通入的气化剂流量的增加,反应器内的反应程度增加,反应温度也随之升高,故加快了CO2与C的还原反应和C与H2O的反应,所以煤气中CO和H2的含量增加,当气化剂流量超过10L/min时,气化剂相对于煤炭有些过量,过量的气化剂与煤气中的CO、H2等可燃成分发生燃烧反应,导致煤气中CO、H2含量减少,煤气中的CO2含量逐渐增加,这一结论与朱二涛的造气试验结果一致。

2.4煤气出口压力对煤气成分的影响

煤气成分的变化与煤气出口压力的关系如图5所示,在一定的压力范围内,随着压力的增加,煤气中CO和H2的含量呈上升趋势,当压力为0.5kPa时,CO含量达到最大值为49.05%。随着气化压力的继续增加,CO含量逐渐平稳,H2含量有一个略微的上升趋势,在一定的压力范围内,还原气体组分(CO+H2)的含量随着压力的增加有一个明显的增加,升高逐渐变得缓慢。

94e0c7ff749cdb60362d367c1c8823f8.png

压力对煤炭气化有很大的影响,从热力学分析,压力增加有利于甲烷化反应,即反应会向体积减小的方向移动,不利于体积增大的气化反应,但实际上,在相对低压范围内,增加压力相当于提高了气化剂的浓度,气化剂的浓度增加,C与CO2的气化反应随压力增加呈近似线性的关系增加。但是随着压力的继续增加,反应速率的进一步增加变得逐渐困难,压力对反应速率的影响越来越小,当压力很大时,气化剂向煤孔隙扩散过程逐渐变得困难,对C与CO2的反应速率反而有一个负面作用,所以煤气中的CO含量有所降低。随着压力的增加,气化剂H2O增加,反应速率加快,煤气中的H2含量逐渐增加,之后压力继续增加,压力对C与H2O反应速率的影响也变得越来越小。

3结论

(1)当反应温度为900℃时,煤气中H2含量处在一个较高的水平低,在一定温度范围内,随煤着气反中应CO温度含的量升比高较,煤气中的CO浓度升高得较快,煤气中的H2含量略微降低,煤气中还原气体组分(CO+H2)的含量随温度的升高而升高,当温度进一步升高,还原气体组分含量升高变得缓慢。

(2)反应时间很短的时候,煤气中的还原气体组分(CO+H2)含量较低,随着反应继续进行,煤气中的成分逐渐稳定,还原气体组分含量逐渐升高且变得稳定,5min时煤气中的CO最高达到最高为40.76%,7min时煤气中的H2含量达到最大为17.17%,随着反应的继续进行,煤气中还原气体组分含量会慢慢降低。

(3)随着气化剂流量的增加,煤气中还原气体组分(CO+H2)含量先升高后降低,煤气中H2和CO含量均呈先升高再降低的趋势。

(4)在一定的压力范围内,随着压力的增加,煤气中CO和H2的含量呈上升趋势,随着气化压力的继续增加,煤气中的CO含量逐渐平稳且有下降的趋势,煤气中H2含量的增加逐渐缓慢,煤气中的还原气体组分(CO+H2)含量在一定压力范围内升高明显,随着压力的进一步升高,煤气中还原气体组分含量的继续升高变得缓慢。

(5)当温度为1000℃,反应时间为5min,气化剂流量为10L/min,煤气出口压力为0.5kPa时,得到的煤气最为符合高炉的需求,煤气中CO含量为49.05%,H2含量为18.75%。