2025年01月16日

星期四

科学技术
联系我们
江苏省钢铁行业协会
协会地址 : 南京市御道街58-2号 明御大厦703室
咨询热线 : 025-84490768、84487588
协会传真 : 025-84487588、84490768
JFE、日本制铁、浦项、安赛乐米塔尔高炉煤气CO₂捕捉技术应用对比分析

2022-05-31 10:57:04

来源:世界金属导报

浏览1850

我国能源以煤炭为主,煤炭等化石燃料的消耗带来经济高速发展的同时,CO2、SO2NOx等大量排放,环境污染问题日益加剧。传统钢铁工业生产过程严重依赖于煤和焦炭等化石燃料,是仅次于电力行业的能耗和CO2排放大户。国际能源署的统计结果表明,制造业CO2排放量约占全球CO2排放总量的40%,其中钢铁工业占制造业CO2排放量的27%左右。炼铁系统的能耗占钢铁生产总能耗的70%以上,CO2排放量约占钢铁生产全流程的80%左右,是钢铁工业节能减排的重点环节。坚持高炉精料操作,优化风温、富氧等调剂手段,推进低燃料比操作是炼铁系统降低能耗、减少CO2排放的重要措施之一,但减排效果有限。采用碳捕捉结合低碳炼铁技术减少CO2直接排放,逐步成为解决钢铁行业碳排放的有效措施。

部分国外钢铁企业已经开展大量高炉煤气中CO2分离捕捉的研究和试验。



一、JFE物理吸附法分离高炉煤气CO2


日本JFE钢铁公司在福山厂建立了小型CO2捕捉试验设备,其处理能力为3t/d,高炉煤气处理量约300m3/h,采用物理吸附技术路线分离高炉煤气中的CO2。该项目是日本COURSE50计划的子项目之一。高炉煤气经过加压、冷却后,依次经过脱湿塔和脱硫塔,脱除煤气中的水分和硫化物,净煤气进入变压吸附核心处理单元。该单元分为两段,第一段是CO2-变压吸附,第二段是CO-变压吸附,分别将CO2和CO从煤气中分离出来。分离回收的CO气体是高热值气体燃料,可用于烧结、热风炉及轧钢等工序。


二、日本制铁化学吸收法分离高炉煤气CO2


日本制铁在君津厂建造了高炉煤气CO2捕集试验装置,处理能力约为100m³/h,该试验装置主要由三部分组成:吸收塔、再生塔、再沸器,以及富液与贫液换热系统。吸收塔内采用胺溶液逆向喷淋技术,捕捉进入吸收塔内高炉煤气中的CO2。富含CO2的富液经换热后,泵送至再生塔上部进行汽提解吸,释放部分CO2。经汽提解吸后的半贫液进入再沸器,使CO2进一步解吸。解吸CO2后的贫液经处理后可返回吸收塔循环使用,捕捉到的高浓度CO2处理后可用于化工生产、开采石油等。


三、浦项制铁化学法吸收分离高炉煤气CO2


与日本制铁化学法不同,浦项制铁采用氨水作为化学吸收剂,基本流程与日本制铁的有机胺法相似,但解吸温度远低于后者。日本制铁采用常规有机胺法,其解吸温度约为120℃,而浦项制铁采用氨水法的解吸温度仅为80℃,使气体解吸过程的能耗大幅度降低。此外,浦项制铁还在研究变压吸附法的高炉煤气CO2分离技术,已经搭建了处理能力为1m³/h的小型试验平台。


四、安赛乐米塔尔公司氧气高炉煤气CO2分离


日本JFE钢铁公司在福山厂建立了小型CO2捕捉试验设备,其处理能力为3t/d,高炉煤气处理量约300/h,采用物理吸附技术路线分离高炉煤气中的CO2。该项目是日本COURSE50计划的子项目之一。高炉煤气经过加压、冷却后,依次经过脱湿塔和脱硫塔,脱除煤气中的水分和硫化物,净煤气进入变压吸附核心处理单元。该单元分为两段,第一段是CO2-变压吸附,第二段是CO-变压吸附,分别将CO2和CO从煤气中分离出来。分离回收的CO气体是高热值气体燃料,可用于烧结、热风炉及轧钢等工序。


文中对CO2捕捉工艺、燃烧后CO2捕捉方法、捕捉剂类型等内容进行了系统对比分析,重点介绍了部分钢铁企业高炉煤气CO2捕捉的工艺试验,结论如下:

(1)CO2捕捉工艺可分为燃烧前捕捉、燃烧过程中捕捉及燃烧后捕捉三类,炼铁高炉采用燃烧前捕捉需提前对喷吹煤粉进行改质,采用燃烧过程中捕捉则需要进行全氧喷吹,采用燃烧后捕捉需要采用物理或化学方法从炉顶煤气中捕捉CO2,并进行后续处理。

(2)CO2燃烧后捕捉方法包括溶液或固体吸收剂吸收、固体吸附分离及膜分离。溶液吸收是常见的CO2捕捉工艺之一,在CO2浓度较低的情况下捕捉效率较高,但易腐蚀设备,再生过程能耗较高,容易产生蒸发损失。采用固体吸收剂对CO2进行化学吸收可得到高纯度CO2,便于后续处理。固体吸收剂包括碱土金属类及碱金属类,其中氧化钙及硅酸锂是常见的固体吸收剂。氧化钙吸收剂成本低,但吸收能力较低且易烧结,循环使用效果较差;硅酸锂吸收能力较强,循环使用效果好,但受锂资源限制,成本较高。采用固体吸收剂捕捉炉顶煤气中的CO2,需开发高性价比固体吸收剂。

(3)变压吸附工艺能耗低,操作简便,但操作时需要将炉顶煤气冷却干燥,且缺乏高性价比的吸附材料,捕捉效率较低。膜分离工艺投资少、能耗低,但需前级处理、脱水和过滤,难以得到高纯度的CO2

(4)部分国外钢铁企业已开展高炉煤气 CO2捕捉研究,主要以燃烧后捕捉工艺为主。JFE采用物理吸附法,日本制铁及浦项制铁采用溶液化学吸收法,安赛乐米塔尔公司则采用氧气高炉与真空变压吸附相结合的工艺方法。目前可用于工业化捕捉的主要是液胺作吸收剂捕捉CO2。